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1.0 SUMMARY 
Future DoD missions will run on system of systems (SoS) characterized by thousands of plat-
forms, sensors, decision nodes, weapons, and warfighters connected through heterogeneous wire-
line and wireless networks to exploit information superiority and achieve strategic and tactical 
objectives. The networks, operating systems, middleware, and applications in SoSs offer a com-
binatoric number of configuration points for adjusting their resource requirements and the quality 
of service (QoS) they deliver.  The Global Information Grid (GIG) is an emerging DoD SoS in-
tended to organize and coordinate this large application and technology space to manage infor-
mation effectively and provide DoD planners and warfighters with the right information to the 
right place at the right time. To successfully support enterprise and tactical information manage-
ment needs, the emerging GIG SoS technologies must provide  (1) universal–yet secure–access 
to information from a wide variety of sources running over a wide variety of hardware/software 
platforms and networks, (2) an orchestrated information environment that aggregates, filters, and 
prioritizes the delivery of this information to work effectively in the face of transient and endur-
ing resource constraints, (3) continuous adaptation to changes in the operating environment, such 
as dynamic network topologies, publisher/subscriber (pub/sub) membership changes, and inter-
mittent connectivity, and (4) tailorable, actionable information that can be distributed in a timely 
manner in the appropriate form and level of detail to users at all echelons.  

The Pollux project was a 36 month R&D project focused on developing, analyzing, empirically 
evaluating, and optimizing technologies that can support the GIG’s real-time QoS needs. This 
effort also focused on solutions that leveraged and enhanced commercial-off-the shelf (COTS) 
and standards-based technologies. This final report describes the results of the Pollux project 
during the period of April 2006 to February 2009. As described below, Pollux focused on the 
following primary technical focus areas during this period of performance: 
1. The DDS Benchmarking Environment (DBE), which enabled the precise analysis of the 

latency, jitter, and throughput of standard-based and/or COTS-based QoS-enabled pub/sub 
technologies, including DDS, JMS, Web Services, and CORBA. 

2. The DDS QoS Modeling Language (DQML), which enables developers of QoS-enabled 
pub/sub SoS to specify and enforce QoS policies that capture user intents and ensuring the 
preservation of information priorities and differentiated flows of information securely and 
predictably through the GIG 

3. The Resource Allocation and Control Engine (RACE), which is a middleware framework 
that supports predictable and scalable GIG application performance, even in the face of 
changing operational conditions, workloads, and resource availability. 

4. Model-driven engineering tools for QoS configuration that developers of GIG SoSs can 
use to bind of application-level QoS policies onto the solution space comprising the QoS me-
chanisms for tuning the underlying middleware. 

5. The Ricochet++ adaptive middleware/transport framework that integrates QoS-enabled 
pub/sub middleware (such as DDS) with the Ricochet transport protocol developed by Cor-
nell as part of the Castor project. 

6. Enhancements to the CUTS System Execution Modeling Tool that enables developers con-
duct “what if” experiments to discover, measure, and rectify performance problems early in 
the lifecycle (e.g., in the architecture and design phases), as opposed to the integration phase, 
when mistakes are much harder and more costly to fix.   

The remainder of this final report summarizes our results in each of these technical focus areas.  
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2.0 THE DDS BENCHMARKING ENVIRONMENT (DBE) 
Tactical information management systems increasingly run in net-centric environments characte-
rized by thousands of platforms, sensors, decision nodes, and computers connected together to 
exchange information, support sense-making, enable collaborative decision making, and effect 
changes in the physical environment. For example, the Global Information Grid (GIG) is an am-
bitious net-centric environment being designed to ensure that different services and coalition 
partners, as well as individuals participating to specific missions, can collaborate effectively and 
deliver appropriate firepower, information, or other essential assets to warfighters in a timely, 
dependable, and secure manner. Achieving this vision requires the following capabilities from 
the distributed middleware software: 

• Shared operational picture. A key requirement for mission-critical net-centric systems is the 
ability to share an operational picture with planners, warfighters, and operators in real-time.  

• Ensure the right data gets to the right place at the right time by satisfying end-to-end 
quality of service (QoS) requirements, such as latency, jitter, throughput, dependability, and 
scalability. 

• Interoperability and portability in heterogeneous environments since net-centric systems 
are faced with unprecedented challenges in terms of platform and network heterogeneity.  

• Support for dynamic coalitions. In many net-centric tactical information management sys-
tems, dynamically formed coalition of nodes will need to share a common operational picture 
and exchange data seamlessly. 

Prior middleware technologies, such as the Common Object Request Broker Architecture 
(CORBA) Event Service and Notification Service, and the Java Message Service (JMS), and var-
ious other proprietary middleware product, have historically lacked key architectural and QoS 
capabilities, such as dependability, survivability, scalability, determinism, security, and con-
fidentiality, needed by net-centric systems for tactical information management. To address these 
limitations—and to better support tactical information management in net-centric systems like 
the GIG—the OMG has adopted the Data Distribution Service (DDS) specification, which is a 
standard for QoS-enabled data-centric publish/subscribe (pub/sub) communication aimed at net-
centric tactical information management systems. DDS is used in a wide range of military and 
commercial systems.  

We developed a DDS Benchmarking Environment (DBE) to facilitate testing of DDS products to 
determine their suitability for tactical information management. In this part of our Pollux project 
we collected results from many new benchmarks that compared the performance of DDS imple-
mentations in various configurations. We also evaluated the portability and configuration details 
of each DDS implementation.  

The DDS Benchmarking Environment (DBE) consists of 

• A directory structure to organize scripts, config files, test ids, and test results 

• A hierarchy of Perl scripts to automate test setup and execution 

• A tool for automated graph generation 

• A shared library for gathering results and calculating statistics 
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The DBE testbed directory structure is organized as follows: 

• Settings 

– Network: ~/DDS/settings/net/ 

– QoS: ~/DDS/settings/qos/ 

– Test Id: ~/DDS/settings/id.gen 

• Start Script: ~/DDS/scripts/benchmark.pl 

• Results: 

– Individual Tests: ~/DDS/results/#id/ 

– Test List File: ~/DDS/results/tests.list 

The DBE has the following three levels of execution:  
• First level: This level provides the user interface and includes the following 

files: 
benchmark.pl   →start_sub.pl 
   →start_pub.pl 
   →start_repo.pl 

• Second level: This level manipulates the node itself and includes the fol-
lowing files: 
 start_sub.pl →executable (i.e. subscriber.exe) 
 start_pub.pl →executable (i.e publisher.exe) 
 start_repo.pl →executable (i.e. repo.exe) 

• Third level: This level comprises the actual executables, e.g., publishers 
and subscribers written for NDDS from RTI (DDS1), OpenSPlice from 
PrismTechnologies (DDS2), and Open DDS (DDS3) from OCI. 

We ran experiments using a simple byte-sequence data type of varying lengths, measuring 
throughput for various values of some other parameter such as number of subscribers, multicast 
vs unicast, or subscriber notification via listener (asynchronous) vs wait-on-condition (synchron-
ous). Figure 1 is a typical example, where we compared average subscriber throughput (1 pub-
lisher and 12 subscribers) for a single DDS implementation using unicast vs multicast. 
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Figure 1: Unicast vs Multicast with 1 Publisher and 12 Subscribers 
 
In Figure 2 we compare two DDS implementations, each one using multicast with 1 publisher 
and 12 susbscribers. The third implementation of DDS we are testing does not support multicast, 
so we could not get an apples-to-apples comparison with this implementation. 

 
Figure 2:  DDS1 vs DDS2 with 1 Publisher and 12 Subscribers (Multicast) 

 

Unicast Multicast 

DDS1 DDS2
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In Figure 3 we compare average subscriber throughput as we scale up the number of subscribers, 
on a single DDS implementation using broadcast. 

 
Figure  

Figure 3: Scaling Up Subscribers Using Broadcast 
 
Evaluating the performance of the DDS implementations overall, we found that each has a very 
distinct architecture, and that the design decisions that led to these architectures have a clear ef-
fect on the conditions under which each implementation performs best. Figure 4 shows the dif-
ferences in each architecture and the implementation it is associated with. 
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In general, DDS1 is the best performer with smaller payload sizes, while DDS2 seems to scale 
better, both to larger payloads and to larger numbers of subscribers (we intend to scale our tests 
to both larger payloads and more subscribers per publisher to see if this trend continues). DDS3 
is much newer and, while it lags behind the other two both in performance and in supported spe-
cification features, it is open-source and has a pluggable transport framework, giving it the po-
tential for rapid improvement. However, its centralized control architecture suggests scalability 
problems, especially with the number of subscribers, and indeed we found this to be the case. 

We also evaluated how easily a DDS application could be ported from one DDS implementation 
to another. Since the DDS specification is a relatively young one, we found some issues here, as 
expected. Figure 5 shows the most significant challenges encountered. In some cases, the feature 
in question is simply underspecified, and the implementation has no choice but to put a proprie-
tary solution in place. In other cases, however, proprietary features and mechanisms have been 
used to facilitate performance or discovery optimization. 

 

  DDS1 DDS2 DDS3 

DomainParticipantFactory compliant compliant proprietary function 

Register Data Types static method member     me-
thod member method 

Spec Operations 
extra argu-

ment (newer 
spec) 

compliant compliant 

Key Declaration //@key 
single 

#pragma 

pair of 

#pragma 

Required App. IDs publisher & 
subscriber none publisher 

Required App. Transport Config code-based none file-based or code-based 

Figure 5: DDS Portability Challenges 
 
The remainder of this section describes the challenges we encountered conducting the experi-
ments presented above and summarizes the lessons learned from our efforts. 
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2.1 Challenge 1: Synchronizing Distributed Clocks  
Problem. It is hard to precisely synchronize clocks among applications running on blades 

distributed throughout ISISlab. Even when using the Network Time Protocol (NTP), we still ex-
perienced differences in time that led to inconsistent results and forced us to constantly repeat the 
synchronization routines to ensure the time on different nodes was in sync. We therefore needed 
to avoid relying on synchronized clocks to measure latency, jitter, and throughput. 

Solution. For our latency experiments, we have the subscriber send a minimal reply to the 
publisher, and use on the clock on the publisher side to calculate the roundtrip time. For through-
put, we use the subscriber’s clock to measure the time required to receive a designated number of 
samples. Both methods provide us with common reference points and minimize timing errors 
through the usage of effective latency and throughput calculations based on a single clock. 

2.2 Challenge 2: Automating Test Execution 
Problem. Achieving good coverage of a test space where parameters can vary in several or-

thogonal dimensions leads to a combinatorial explosion of test types and configurations. Manu-
ally running tests for each configuration and each middleware implementation on each node is 
tedious, error-prone, and time-consuming. The task of managing and organizing test results also 
grows exponentially along with the number of distinct test configuration combinations. 

Solution. The DBE stemmed from our efforts to manage the large number of tests and the 
associated volume of result data. Our efforts to streamline test creation, execution and analysis 
are ongoing, and include work on several fronts, including a hierarchy of scripts, several types of 
configuration files, and test code refactoring. 

2.3 Challenge 3: Handling Packet Loss 
Problem. Since our DDS implementations use the UDP transport, packets can be dropped at 

the publisher and/or subscriber side. We therefore needed to ensure that the subscribers get the 
designated number of samples despite packet loss. 

Solution. One way to solve this problem is to have the publisher send the number of messag-
es subscribers expect to receive and then to stop the timer when the publisher is done. The sub-
scriber could then use only the number of messages that were actually received to calculate the 
throughput. However, this method has two drawbacks: (1) the publisher must send extra notifica-
tion messages to stop the subscribers, but since subscribers may not to receive this notification 
message the measurement would never happen and (2) the publisher stops the timer, creating a 
distributed clock synchronization problem discussed in Challenge 1 that could affect the accura-
cy of the evaluation. To address these drawbacks we therefore adopted an alternative that ensures 
subscribers a deterministic number of messages by having the publishers “oversend” an appro-
priate amount of extra data.. With this method, we avoid extra “pingpong” communication be-
tween publishers and subscribers. More importantly, we can measure the time interval entirely at 
the subscriber side without relying on the publisher’s clock. The downside of this method is that 
we had to conduct experiments to determine the appropriate amount of data to oversend.  
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2.4 Challenge 4: Ensuring Steady Communication State 
Problem. Our benchmark applications must be in a steady state when collecting statistical 

data. 

Solution. We send primer samples to “warm up” the applications before actually measuring 
the data. This warmup period allows time for possible discovery activity related to other sub-
scribers to finish, and for any other first-time actions, on-demand actions, or lazy evaluations to 
be completed, so that their extra overhead does not affect the statistics calculations. 

2.5 Summary of Lessons Learned 
Based on our test results, experience developing the DBE, and numerous DDS experiments, 

we learned the following: 

• DDS Performs significantly better than other pub/sub implementations. Our results that 
even the slowest DDS was about twice as fast as non-DDS pub/sub services. We also showed 
that DDS pub/sub middleware scales better to larger payloads compared to non-DDS pub/sub 
middleware. This performance margin is due in part to the fact that DDS decouples the in-
formation intent from information exchange. In particular, XML-based pub/sub mechanisms, 
such as SOAP, are optimized for transmitting strings, whereas the data types we used for test-
ing were sequences. GSOAP’s poor performance with large payloads is due to the fact that 
GSOAP (de)marshals each element of a sequence, which may be as small as a single byte, 
while DDS implementations send and receive these data types as blocks. 

• Individual DDS architectures and implementations are optimized for different use cas-
es. Our results showed that NDDS’s decentralized architecture is optimized for smaller payl-
oad sizes compared to OpenSplice’s federated architecture. As payload size increases, espe-
cially for the complex date types, OpenSplice catches up and surpasses NDDS in perfor-
mance on the same blade. When the publisher and subscriber run on different blades, howev-
er, NDDS outperforms OpenSplice for all tested data sizes.  

• Apples-to-apples comparisons of DDS implementations are hard. The reasons for this dif-
ficulty fall into the following categories: (1) no common transport protocol – the DDS imple-
mentations that we investigated share no common application protocol, e.g., RTTI uses a 
RTPS-like protocol on top of UDP, OpenSplice will add RTPS support soon, and TAO DDS 
simply implements raw TCP and UDP, (2) no universal support for uni-
cast/broadcast/multicast – Table 1 shows the different mechanisms supported by each DDS 
implementations, from which we can see DDS3 does not support any group communication 
transport, making it hard to maintain performance as the number of subscribers increases, (3) 
DDS applications are not yet portable, which stem partially from the fact that the specifica-
tion is still evolving and vendors use proprietary techniques to fill the gaps (a portability 
wrapper façade would be a great help to any DDS application developer, and a huge help to 
our efforts in writing and running large numbers of benchmark tests), and (4) arbitrary de-
fault settings for DDS implementations, which includes network-specific parameters not cov-
ered by the DDS specifications that can significant impact performance.  
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Table 1: Supported DDS Communication Models  

Impl Unicast Multi-
cast 

Broadcast 

DDS1 Yes (default) Yes No 

DDS2 No Yes Yes (default) 

DDS3 Yes (default) No No 

 

More test results, as well as more information about the tests, DBE testbed, implementation ar-
chitectures, and portability issues can be found at 

http://www.dre.vanderbilt.edu/DDS 

We presented the results of our DBE experiments at the Object Management Group’s Real-time 
and Embedded Systems Workshop in Ballston, VA on July 11th, 2006 and the Defense Trans-
formation and Net-Centric Systems conference, April 9-13, 2007, Orlando, Florida. 
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3.0 THE DDS QOS MODELING LANGUAGE (DQML) 
We developed the DDS Quality of Service (QoS) Modeling Language (DQML), which faci-

litates the design of QoS configurations for DDS applications and provides constraint checking 
to support “correct by construction” QoS configurations. DQML checks for compatibility con-
straint errors where data will not flow between DDS DataReaders and DataWriters due to in-
compatible QoS settings on the entities. It also checks for consistency constraint errors where 
multiple QoS settings for a particular entity will not be used because they conflict with each oth-
er. 

DQML was developed using the Generic Modeling Environment (GME) tool. DQML mod-
els are also developed in GME using the DQML paradigm. GME provides a GUI for interacting 
with DQML so that DDS entity and QoS policy icons can be dragged and dropped onto a design 
space. Connections can then be made between DDS entities, as well as between DDS entities and 
QoS policies. Additionally, a DQML interpreter was developed to create QoS settings files for 
the DDS Benchmarking Environment (DBE). Once a DQML model has been developed, the 
modeler can then invoke the DBE interpreter to generate QoS settings files for the DataReaders 
and DataWriters that DBE will deploy. DBE can directly read and use these files with no manual 
intervention needed with respect to the QoS settings.  Figure 6 illustrates the various elements 
and their relationships in DQML. 

 
           Figure 6: DQML with its DBE Interpreter 

 

This section describes the challenges encountered when developing applications using DDS and 
describes how DQML addresses them. 

Compicon.icoDBE 
Interpreter 

DBE

DataReader 

DataWriter 

  
QoS Settings 

  
QoS Settings 
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3.1 Challenge 1: Compatibility and Consistency of QoS Settings 
Problem. With the 22 QoS policies specified in DDS and the interactions between them, 

there is a need to ensure that QoS configurations specified for an application are compatible be-
tween different DDS entities and consistent for any one particular DDS entity. Manually check-
ing these interactions is difficult since it is easy to miss interactions of settings that violate com-
patibility or consistency. Managing and changing QoS settings dynamically while the system is 
running adds inherent complexity and lowers the confidence level of the system. For some types 
of systems this lack of confidence is problematic (e.g., certain RT systems, systems with prova-
bility requirements). Iterating through the development cycle to modify source code, build, run, 
and test adds time and accidental complexity. 

Solution. DQML has been developed to allow correct by construction configurations. At de-
sign time the developer can create a QoS configuration and check if it is compatible and consis-
tent before the application is ever deployed. 

3.2 Challenge 2: QoS Settings Generation 
Problem. Generating QoS settings by hand can lead to accidental complexity. While the de-

veloper meant only to change one specific setting, other changes may inadvertently crop up (e.g., 
due to editing mistakes). 

Solution. DQML provides a DBE interpreter that will automatically generate QoS settings 
files that can be used by DBE. 

3.3 Challenge 3: Handling Packet Loss 
Problem. Typical DDS application development includes specifying the QoS settings in the 

source code along with the business logic. This is a source of accidental complexity. Changes 
made to the source code to modify QoS settings may inadvertently modify the business logic 
(e.g., due to editing mistakes) since the business logic is tightly coupled with QoS configuration 
in the source code. 

Solution. DQML decouples the business logic from QoS configuration by generating QoS 
settings files that can be used by the application but still remain decoupled from the source code. 

Papers describing DQML and the problems it addresses appeared in the proceedings of the 
Distributed Objects, Middleware, and Applications (DOA'08), Monterrey, Mexico, Nov 10 - 12, 
2008 and the proceedings of International Conference on Distributed Event-Based Systems 
(DEBS), June 20-22nd, 2007, Toronto, Canada 
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4.0 THE RESOURCE ALLOCATION AND CONTROL ENGINE (RACE) 
We developed the Resource Allocation and Control Engine (RACE), which is an adaptive re-

source management framework built atop QoS-enabled distributed computing middleware, such 
as Real-time CORBA or DDS.  As shown in Figure 7, RACE provides (1) resource monitor 
components that track utilization of various system resources, such as CPU, memory, and net-
work bandwidth, (2)  QoS monitor components that track application QoS, such as end-to-end 
delay, (3) resource allocator components that allocate resource to components based on their 
resource requirements and current availability of system resources, (4) configurator components 
that configure QoS parameters of application components, (5) controller components that com-
pute end-to-end adaptation decisions to ensure that QoS requirements of applications are met, 
and (6) effector components that perform controller-recommended adaptations. 

 
Figure 7: Resource Allocation and Control Engine (RACE) for DRE Systems 

  

We have initially evaluated the effectiveness of RACE in the context of representative DRE 
systems:  NASA's Magnetospheric Multi-scale Mission system (MMS) and a convey escort ap-
plication. Our empirical results show that the capabilities provided by RACE yields a predictable 
and high performance system, even in the face of changing operational conditions, workloads, 
and resource availability. This section describes how RACE resolves various challenges encoun-
tered wile building a prototype implementation inspired by the MMS case study. 
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4.1 Challenge 1: Efficient Resource Allocation to Applications 
Problem:  Applications generated in the MMS system are resource sensitive, i.e., end-to-end 

QoS is reduced significantly if the required type and quantity of resources are not provided to the 
applications at the right time. System resources should therefore be allocated in a timely fashion 
to components of applications such that their resource requirements are met.  In open DRE sys-
tems like MMS, however, input workload affects utilization of system resources by, and QoS of, 
applications.  These parameters of the applications may therefore vary significantly from their 
estimated values. Moreover, system resource availability, such as available network bandwidth, 
may also be time variant.  

Solution. RACE monitors the current utilization of system resources and employs resource 
allocation algorithms, such as constraint based bin packing algorithm, to compute resource 
(re)allocation to applications. However, since CPU and memory utilization overhead might be 
associated with implementations of resource allocation algorithms themselves, RACE should, 
therefore, support multiple resource allocation algorithms and select the appropriate one(s) de-
pending on properties of the application and the overheads associated with various implementa-
tions. 

4.2 Challenge 2: Configuring Platform-specific QoS Parameters 
Problem: QoS of applications depend on various platform-specific real-time QoS configura-

tions including (1) QoS configuration of the QoS-enabled component middleware such as priori-
ty model, threading model, and request processing policy, (2) operating system QoS configura-
tion such as real-time priorities of the process(es) and thread(s) that host and execute within the 
components respectively, and (3) networks QoS configurations, such as diffserv code-points of 
the component interconnections.  Since these configurations are platform-specific, it is tedious 
and error-prone for system developers to specify them in isolation.   

Solution: RACE shields application developers from low-level platform-specific details and 
defines a higher-level QoS specification model.  Developers specify only QoS characteristics of 
the application, such as QoS requirements and relative importance, and RACE automatically 
configures platform-specific parameters accordingly.   
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4.3 Challenge 3: Monitoring End-to-end QoS and Ensuring QoS Requirements are Met 
Problem: To meet the end-to-end QoS requirements of applications, system resource utiliza-

tion and application QoS must be monitored. The system should be able to adapt to dynamic 
changes, such as variations in operational conditions, input workload, and/or resource availabili-
ty, and ensure that QoS requirements of applications are not violated. 

Solution: To resolve the above described challenges, RACE's control architecture employs a 
feedback loop to manage system resource and application QoS and ensures (1) QoS requirements 
of applications are met at all times and (2) system stability by maintaining utilization of system 
resources below their specified set-points. RACE's control architecture features a feedback loop 
that consists of three main components: Monitors, Controllers, and Effectors. Monitors tracks 
both system QoS and resource utilization. Controllers enable a DRE system to adapt to changing 
operational context and variations in resource availability and/or demand. The RACE Controllers 
implement various control algorithms that manage runtime system performance. Based on the 
control algorithm they implement, Controllers modify configurable system parameters (such as 
execution rates and mode of operation of the application), real-time configuration settings (such 
as operating system priorities of processes that host the components), and network diffserv code-
points of the component interconnections.  

We wrote a paper describing the structure and functionality of RACE along with our empiri-
cal evaluation that appeared in the proceedings of the 10th IEEE International Symposium on 
Object/Component/Service-oriented Real-time Distributed Computing held at Santorini Island, 
Greece May 7-9, 2007.  
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5.0 MODEL DRIVEN ENGINEERING TOOLS FOR QOS CONFIGURATION 
Commercial-off-the-shelf (COTS) middleware, such as application servers, QoS-enabled infor-
mation grids, and object request brokers (ORBs), provide out-of-the-box support for traditional 
concerns affecting QoS in DRE system development, including multithreading, assigning priori-
ties to tasks, publish/subscribe event-driven communication mechanisms, security, and multiple 
scheduling algorithms. This support helps decouple application logic from QoS mechanisms 
(such as portable priority mapping, end-to-end priority propagation, thread pools, distributable 
threads and schedulers, request buffering, and managing event subscriptions and event delivery 
necessary to support the traditional concerns listed above), shields the developers from low-level 
OS specific details, and promotes more effective reuse of such mechanisms.  

Although component middleware has helped move the configuration complexity away from the 
application logic, the middleware itself has become more complex to develop and configure 
properly. To achieve the desired QoS characteristics for DRE systems, therefore, system devel-
opers and integrators must perform QoS configuration of the middleware. This process involves 
the binding of application level QoS policies—which are dictated by domain requirements—onto 
the solution space comprising the QoS mechanisms for tuning the underlying middleware. Ex-
amples of domain-level QoS policies include (1) the number of threads necessary to provide a 
service, (2) the priorities at which the different components should run, (3) the alternate proto-
cols that can be used to request a service, and (4) the granularity of sharing among the applica-
tion components of the underlying resources such as transport level connections.  

QoS configuration bindings can be performed at several time scales, including statically, e.g., di-
rectly hard coded into the application or middleware, semi-statically, e.g., configured at deploy-
ment time using metadata descriptors, or dynamically, e.g., by modifying QoS configurations at 
runtime. Regardless of the binding time, however, the following challenges must be addressed: 

• The need to translate the domain-specific QoS policies of the application into QoS configura-
tion options of the underlying middleware. 

• The need to choose valid values for the selected set of QoS configuration options. 
• The need to understand the dependency relationships and impact between the different QoS 

configuration options, both at individual component level (local) as well as at aggregate  in-
termediate levels, such as component assemblies, through the entire application (global). 

• The need to validate the local and global QoS configurations, which include the values, the 
dependency relationships, and the semantics of QoS configuration options at all times 
throughout the DRE system lifecycle. 

Without effective tools to address these challenges, the result will be QoS mis-configurations 
that are hard to analyze and debug. As a result, failures will stem from a new class of configura-
tion errors rather than (just) traditional design/implementation errors or resource failures. 

To address the QoS configuration challenges described above, we developed the Quality of ser-
vice pICKER (QUICKER) model-driven engineering (MDE) toolchain shown in Figure 8. 
QUICKER extends the Platform-Independent Component Modeling Language (PICML), which 
is a domain-specific modeling language (DSML) built using the Generic Modeling Environment 
(GME). 
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Figure 8: QUality of service pICKER (QUICKER) Toolchain 
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QUICKER enables developers of DRE systems to annotate applications with QoS policies. 
These policies are specified at a higher-level of abstraction using platform-independent models, 
rather than using low-level platform-specific configuration options typically found in middle-
ware configuration files. QUICKER thus allows flexibility in binding the same QoS policy to 
other middleware technologies.  Before the components in a DRE system can be deployed, how-
ever, their platform-independent QoS policies must be transformed into platform-specific confi-
guration options. QUICKER therefore uses model-transformation techniques to translate the 
platform-independent specifications of QoS policies into a platform-specific model defined using 
the Component QoS Modeling Language (CQML), which models the QoS configuration options 
required to implement the QoS policies of the application specified in PICML. Unlike PICML 
(whose models are platform-independent), CQML models are specific to the underlying middle-
ware infrastructure (which in our case is Real-time CCM). 

QUICKER subsequently uses generative techniques on the CQML model to synthesize: 

• The input to the Bogor model-checking framework, which validates the transformation-
generated application component-specific middleware QoS configuration and identifies all 
permissible changes to these configuration options that can be performed at runtime, while 
maintaining the validity of QoS configuration across the entire application, and 

• The descriptors in a middleware-specific format (such as XML) required to configure the 
functional and QoS properties of the application in preparation for deployment in a target en-
vironment. 

This section describes the challenges in QoS configuration in middleware and how QUICKER 
addresses these challenges. 

5.1 Challenge 1. Inherent Complexity in Translating QoS Policies to QoS Configuration 
Options 
Problem: Translating QoS policies into QoS configuration options is hard because it must trans-
form semantics from the application domain to the semantics of the underlying component mid-
dleware. QoS-enabled component middleware provides mechanisms to configure (1) processor 
resources, such as portable priorities, end-to-end priority propagation, thread pools, distributable 
threads and schedulers, (2) communication resources, such as protocol properties and explicit 
binding of connections, and (3) memory resources, such as buffering of requests. To translate the 
QoS policies into QoS mechanisms by configuring the QoS options, application developers need 
a thorough understanding of the underlying middleware platforms. While schedulability analysis 
might determine the right priority values for each component in the path of each control flow, the 
choice of QoS policies used to configure the middleware has a significant impact on the end re-
sult of satisfying QoS requirements. Without tool support, therefore, it is tedious and error-prone 
for a domain expert to translate QoS policies or analysis results to a subset of the QoS configura-
tion options (e.g., priority models, priority-bands, and thread pools) supported by the middleware 
that will ultimately impact the level of QoS achieved. 

Solution: QUICKER gathers the application QoS policies at the domain-level abstraction 
and uses model-transformation to automate the tedious and error-prone translation of QoS poli-
cies to the appropriate subset of QoS configuration options.  The Graph Rewriting and Trans-
formation (GReAT)  tool to transform platform-independent QoS policies captured in PICML 
(the input) to platform-specific QoS configuration options captured in CQML (the output). 
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5.2 Challenge 2.  Ensuring Validity of QoS Configuration Options  
Problem: Assuming that a domain expert can translate the QoS policies into a subset of QoS 

configuration options, it is also necessary to understand the pre-conditions, invariants, and post-
conditions of the different QoS configuration options since they affect middleware behavior.  
This problem is exacerbated by the plethora of options and choices of valid values for each op-
tion, as well as by the fact that choosing one value for a particular option may have side effects 
on other options. These side effects are sometimes manifested as overt failures, such as failure to 
perform a mapping of CORBA priority to OS priority because of insufficient priorities in the OS 
to support the choice of priority mapping scheme, e.g., direct mapping. They may also be mani-
fested, however, as hard-to-reproduce and/or debug runtime failures that only emerge during 
field testing, or after deployment, which are much harder to detect and fix.  In summary, validat-
ing the values of the different QoS configuration options in isolation and together with connected 
components is critical to the successful deployment and ultimately the operation of DRE sys-
tems. Once again, it is hard to validate these values without automated tool support.  

Solution: After the model-transformation portion of the QUICKER toolchain generates a 
CQML model comprising the QoS configuration options, the correctness of these options must 
be validated before the application assembly is deployed. We validate these options using the 
Bogor model-checking framework, which is a customizable explicit-state model checker imple-
mented as an Eclipse plugin. 

5.3 Challenge 3. Resolving Dependencies between QoS Configuration Options  
Problem: Even with a thorough understanding of middleware QoS configuration options, 

manual configuration of QoS policies does not scale as the number of entities to configure in-
creases. This lack of scalability stems from dependencies between the different QoS configura-
tion options of each component, such as the dependency between the CORBA or DDS priority of 
a component, the chosen priority mapping scheme (to map CORBA or DDS priority to native OS 
priority), and the priority-banded connections policy (which selects the appropriate connection to 
route requests based on the request invocation priority). As the number of components increases, 
the number of intra-component dependencies increases proportionally. If the components are 
connected, the side effect of the connection between components may also induce an inter-
component option dependency. Since these dependencies can grow quadratically, it is infeasible 
for developers to manage these dependencies manually.   

Solution: We developed Bogor Input Language (BIR) extensions to capture the interconnec-
tions between the different components in the applications.  These BIR extensions were then 
augmented using BIR primitives that allowed validating the dependencies between options 
among connected components of an application. 
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5.4 Challenge 4. Ensuring Validity of QoS Configuration Options with Changes in QoS Pol-
icies 

Problem: QoS configuration options effect the non-functional behavior of a system, and thus 
are affected by changes in the system environment. For a DRE system to operate effectively in 
hostile environments, such as space missions, component middleware and their associated QoS 
configuration options may need to adapt to their current conditions. While it is useful to change 
QoS configuration options at runtime to effect changes in behavior (such as re-prioritizing or in-
creasing/decreasing resource usage), such dynamic reconfigurations may incur another set of 
challenges. In particular, it is non-trivial to change a running system because the system might 
crash during reconfiguration due to misconfiguration of QoS options.  Exhaustive evaluation of 
possible choices of QoS configuration options and validation of the reconfigured state is too time 
consuming to perform at runtime and can delay the reconfiguration process itself, rendering it 
useless.  

Solution: Our QoS extensions explore the possible states of an application and generate a set 
of valid application states.  By exploring all the possible states of an application, QoS extensions 
identify both the set of valid and invalid application states. The valid states of an application can 
be used to select runtime QoS configurations by the RACE QoS adaptation framework at design-
time. We can also construct an automaton that can guide the behavior of the RACE controller to 
adapt   configuration options dynamically, to ensure that reconfiguration will not yield an invalid 
application state. 

We published a paper describing the structure and functionality of QUICKER along with our 
empirical evaluation called that appeared at the 10th IEEE International Symposium on Ob-
ject/Component/Service-oriented Real-time Distributed Computing held at Santorini Island, 
Greece May 7-9, 2007.  
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6.0  RICOCHET++ ADAPTIVE MIDDLEWARE/TRANSPORT FRAMEWORK 
We collaborated with Cornell University on the Ricochet++ project, which integrates the 

OpenDDS QoS-enabled middleware with the Ricochet transport protocol developed by Ken 
Birman’s group as part of the Castor project. OpenDDS is an open-source implementation of the 
Data Distribution Service (DDS) that supports a pluggable transport framework. This framework 
allows transport protocols to be used by OpenDDS for data transport. OpenDDS is open-source 
software supported by Object Computing, Inc. (www.ociweb.com). Ricochet provides low laten-
cy loss detection, low latency loss correction for single missed packets, and probabilistic reliabil-
ity. It is built on top of IP multicast and requires no modifications to routers or gateways. All the 
functionality provided by Ricochet is managed in the end hosts. Figure 9 below illustrates the 
behavior of Ricochet when there are no dropped packets. Error correction information is passed 
between the receivers of the multicast data similar in concept to gossip-based protocols. 

 
Figure 9: Ricochet Running Forward Error Correction (FEC) Algorithm 

 
Figure 10 below shows the behavior of Ricochet when a data packet is dropped. This condi-

tion is detected quickly between receivers since they exchange information as to what packets 
they have already received. Additionally, this information also allows receivers to reconstruct a 
lost packet. We initially downloaded the Ricochet source code and started running the example 
application supplied to gain familiarity with Ricochet. We then investigated OpenDDS’s plugga-
ble transport framework to understand how to implement the integration of OpenDDS and Rico-
chet. In addition, we determined how to interface Java and C++ since OpenDDS is written in 
C++ and the Ricochet transport protocol is written in Java. 
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Figure 10: Ricochet Using Forward Error Correction To Correct Packet Loss 
 

 
Figure 11: OpenDDS and Ricochet Integration 
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We enhanced the OpenDDS and Ricochet++ integration shown in Figure 11 to support mul-
tiple topics where each topic will be mapped to a multicast group in Ricochet++. Previously only 
a single Ricochet++ multicast group was supported for any one OpenDDS executable within the 
distributed metrics application.Additionally, we developed software to collect latency metrics for 
an OpenDDS application with one sender and multiple receivers. The publisher sends out data on 
multiple topics which correlate to multiple multicast groups within Ricochet++. A subscriber 
then receives the data for the topic to which it subscribed and calculates latency metrics for the 
data. 

We presented a poster entitled “Trustworthy Conferencing via Domain-specific Modeling 
and Low Latency Reliable Protocols” at the NSF TRUST Spring 2008 Conference in April. We 
also published papers on our Ricochet++ work at the 2nd workshop on Large-Scale Distributed 
Systems and Middleware (LADIS 2008), IBM TJ Watson Research Center, Yorktown, New 
York, September 2008. 
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7.0 CUTS SYSTEM EXECUTION MODELING TOOL ENHANCEMENTS 
The Component Workload Emulator (Co-WorkEr) Utilization Test Suite (CUTS) is a system ex-
ecution modeling (SEM) tool that helps developers conduct “what if” experiments to discover, 
measure, and rectify performance problems early in the lifecycle (e.g., in the architecture and 
design phases), as opposed to the integration phase, when mistakes are much harder and more 
costly to fix.  In particular, CUTS provides the following capabilities:  

1. It allows users (e.g., software architects, developers, and systems engineers) specify the struc-
ture of an enterprise DRE system (e.g., the component and their interconnections us-ing 
CUTS DSMLs).  

2. It allows users to associate the necessary QoS characteristics with individual compo-nents 
(e.g., CPU utilization) or the system as a whole (e.g., deadline of a critical path through the 
system).  

3. It allows the information captured by the tools can be synthesized into executable code and 
configuration metadata, which the middleware then uses to deploy the emu-lated/actual appli-
cation/system components onto the target platform.  

4. It allows system developers and engineers to analyze the collected metrics and explore design 
alternatives from multiple computational and valuation perspectives to quantify the costs of 
certain design choiceson end-to-end system performance.  

This process can be applied iteratively throughout the phases of development process.  
 
In the Pollux project we developed a data collection and analysis framework used when integrat-
ing the CUTS system execution modeling tool with continuous integration environments, such as 
CruiseControl (ccnet.throughworks.com), to create CiCUTS, and began the first phase of identi-
fying search algorithms for locating deployments and configuration of component-based system 
that meet desired performance requirements. 
 The motivation for generalizing the data collection and analysis framework for CiCUTS is to 
improve its applicability across multiple project domains. Moreover, provide capabilities to 
large-scale distributed system developers who collect large amounts of varying data for under-
standing system performance at multiple levels without having to deal with the complexity to 
implementing an analysis and reporting framework. By using CiCUTS’s generic reporting and 
analysis framework, developers are be able to identify metrics of interest at a high-level, such as 
throughput of an event, or test and test configurations, and let CiCUTS monitor and analyze such 
metrics continuously throughout the system’s development lifecycle. 
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… 
 CiCUTS.instance ().log (LM_INFO, “received ” + events + “ events”); 

                     … 
Listing 1. Example Log Message for Capturing Performance 

 

 As illustrated in Listing 1, developers use simple log messages to identify their metrics of 
interest and embed the messages in their source code. We use log messages because they (1) are 
flexible enough to capture any arbitrary performance metric, (2) can be inserted/removed quickly 
to modify collected performance metrics, (3) serve as good indicators for understanding behavior 
and performance.  

``received {INT x} events’’ 

Listing 2. Example High-level Regular Expression for Analyzing Performance 
 

 From a testing standpoint, capturing the performance metrics will be handled seamlessly 
by the CiCUTS’s testing environment. Developers, therefore, only have to identify what metrics 
need to be analyzed by the analysis and reporting framework. Listing 2 shows an example regu-
lar expression that corresponds to the performance metric presented in Listing 1. For each test 
identified in the database, the analysis framework will convert the high-level regular expressions 
into usable regular expressions for data mining against collected log messages. From the ex-
tracted log messages, it will present a graph of the identified performance metric.  
 

         … 
 CiCUTS.instance ().log (LM_INFO, “received ” + events + “ events over a ” + duration + “ 

minute test”); 
                     … 
 

``received {INT x} events over a {INT duration} minute test’’ 
analysis: x / duration 

 
Listing 3. High-level Regular Expression with On-The-Fly Evaluation 

  
For cases where a single identifier is insufficient to capture performance, we provide on-the-

fly evaluation. As highlighted in Listing 3, the log message captures the number of events pub-
lished and the duration of the test. If we want to capture how many events were published per 
second, but failed to do the calculation when creating the log message, we can create an equation 
that evaluates the identifiers in the log message.
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Figure 12: Analysis of a Single Unit Test for Multiple Test Runs 

 
  Once the high-level metrics have been data mined and analyzed, results for the test run are 
displayed to the tester. In addition to showing metrics for single test run, the analysis framework 
is able to show metrics for multiple tests runs, such as a night build of the system. As illustrated 
in Figure 12, the analysis framework presents the results of a single unit test for multiple test 
runs. This is similar to the initial effort; however, it extends that effort because all results are 
generated from metrics that have been identified at a high-level. 
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